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SOIL AND ROCK CAUSING ENGINEERING
GEOLOGIC PROBLEMS IN UTAH

by

William E. Mulvey
Utah Geological Survey

ABSTRACT

Soil- and rock-related engineering geologic problems occur
in a variety of geologic settings and are some of the most
widespread and costly geologic hazards in Utah. To show the
distribution of problem soil and rock, a statewide map
(1:500,000 scale) was compiled documenting the occurrence of
problems related to soil and rock as well as geologic units with
the potential to cause similar problems. The map is designed to
alert developers, planners, engineers, and others of potential
problem areas where more detailed geotechnical studies should
be performed prior to development. Information for the map
was obtained from local, state, and federal government inves-
tigations and private consultants’ reports.

Nine types of problems related to soil and rock are shown.
Of all the problem deposits depicted on the map, the most ex-
tensive are expansive soil and the rock units from which it is
derived. Expansive soil and parent rock occur over ap-
proximately 15 percent of the state. The majority of expansive
soil problems are related to weathered marine shales in southern
Utah, and Lake Bonneville and other deep-lake sediments in
central basin areas of western Utah. Subsidence of the ground
surface due to collapsible soil has caused extensive damage in
many parts of the state. Collapsible or hydrocompactible soil is
common in Holocene alluvial-fan and debris-flow deposits in
Utah. Soil and rock containing high concentrations of gypsum
are susceptible to dissolution and subsidence.

Another rock with the potential to cause problems is lime-
stone. Limestone susceptible to solution and subsidence occurs
in northern Utah, the Uinta Mountains, and mountains of the
western deserts, where karst topography is locally well
developed. No known damage to structures in Utah has oc-
curred from ground collapse or subsidence related to karst, but
because karst ground-water systems have little filtering
capacity, contamination of ground water is a major concemn.
Piping is a common problem in fine-grained Holocene alluvium
incised by streams in much of southeastern Utah. Collapse of
soil pipes and subsequent erosion has damaged roads and
agricultural land.

The four remaining problem deposits are more localized in
their distribution. Sand dunes with a variety of compositions
occur in isolated patches throughout western Utah, and actively
migrating dunes can cause road maintenance problems. Along
the shores of Great Salt Lake, Utah Lake, and in glaciated
drainages in the mountains, peat deposits are susceptible to
oxidation, desiccation, and subsidence when exposed to the air
or when drained. On the eastern slope of the Wasatch Plateau,
along the Book Cliffs, and in the Park City and Tintic mining
districts, surface subsidence due to collapse of underground
mine workings may occur. Western Utah has extensive areas of
sodium sulfate-rich soils which can damage structures.



INTRODUCTION

Geologic materials with characteristics that make them sus-
ceptible to volumetric changes, collapse, subsidence, or other
engineering-geologic problems are referred to as problem soils
and rocks. Geologic and climatic conditions in much of Utah
provide a variety of localized to widespread occurrences of
these materials. This map and accompanying text delineate and
describe known areas of problem soil and rock in Utah. The
report is intended to provide a guide to areas where hazards
from these materials may be expected.

Nine types of problem soil and rock are included on the map
and are discussed in the text. They are: 1) expansive soil and
rock with high shrink/swell potential, 2) collapsible or
hydrocompactible soil, 3) gypsum and gypsiferous soil suscep-
tible to dissolution, 4) limestone susceptible to solution under
some hydrogeologic conditions, 5) soil subject to piping (local-
ized subsurface erosion), 6) active dunes, 7) highly compres-
sible peat, subject to volume change, 8) underground mines
which may subside and collapse, and 9) soil containing sodium
sulfate. Some materials, such as expansive soil and limestone,
cover large areas of the state, whereas others, like dunes and
peat, are of limited areal extent.

Geology and climate are the main factors which influence
the distribution of problem soil and rock. The geologic parent
material largely determines the type of problem present. For
example, expansive soil is most often associated with shale, and
karst dissolution features form in limestone and gypsiferous for-
mations. Weathering and erosion are controlled by local and
regional climate. A prime example of the influence of climate
is collapsible soils, which are found predominantly in arid
regions where annual rainfall is low.

Humans have no influence on the distribution of problem
soil and rock, but human activities are often adversely affected
by them and many urbanized areas in the state are susceptible to
damage from these deposits. As development encroaches on
less suitable terrain, damage from problem soil and rock has in-
creased. This statewide compilation of available information
indicates areas where detailed geotechnical studies may be
needed to identify and mitigate problem soil and rock hazards,
and thus avoid costly corrective measures.

METHODS AND SCOPE

The map and text are compiled from investigations con-
ducted in Utah by numerous agencies and authors. A limited
number of aerial photographs were used to verify data; due to
the large area covered, field work was confined to critical areas.

Two types of information are shown on the map: 1) docu-
mented occurrences of problem soil and rock, commonly caus-
ing damage to structures, and 2) geologic units with potential to
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cause similar kinds of problems. Documented occurrences pro-
vide the basic information used to identify problem geologic
units. Deposits with the potential to cause damage are more
widespread than documented occurrences, which are clustered
in urban areas where problem soil and rock are encountered by
development. Available data concerning problem materials
consist primarily of unpublished consultants’ reports, and state,
local, and federal government investigations. Most documented
occurrences are limited to instances of damage to structures and
roads. In some cases, however, soil tests were used to docu-
ment occurrences. Although this type of data does not repre-
sent actual damage to a structure, it does indicate the potential
for damage to occur.

Due to the small scale of the map, areas affected by karst,
dunes, and expansive soils are generalized. These areas are
widely distributed throughout the state, and the largest and best
known deposits were mapped. There may be localized problem
areas not depicted due to the map scale. This is especially true
of many small areas of active dunes which are scattered
throughout the state.

PROBLEM SOIL AND ROCK

The various categories of problem soil and rock are dis-
cussed according to the processes that created the deposits, their
distribution within Utah, their associated engineering-geologic
problems and geologic hazards, and the mitigation techniques
used to reduce the hazards. Specific problem deposits and their
locations are shown on the map and are listed in the table in ap-
pendix 2.

Expansive Soil and Rock

Expansive soil and rock are the most common problem
deposits in Utah, covering approximately 15 percent of the
state. Most expansive soil and rock were originally deposited
as clay, silt, and some salt in seas or lakes that covered much of
the state at different times in the geologic past. Expansive
deposits are typically clay-rich. The clay minerals cause the
deposits to expand and contract with changes in moisture con-
tent. All clay minerals expand to some degree, but the most
common clay mineral associated with expansive deposits in
Utah is montmorillonite (Bauman, 1964).

Some varieties of montmorillonite can swell to 2,000 times
their original dry volume (Tourtelot, 1974). Clays may swell in
two ways when wetted, either by absorption of water between
clay particles or by absorption of water into the crystal lattice
that makes up the individual particles (figure 1). In both
processes, the absorbed water causes the soil or rock to expand.
Montmorillonite commonly swells by absorption of water be-
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Figure 1. Schematic diagram of water absorption processes in clay miner-
als.

tween individual crystals. Costa and Baker (1981) state that
uplift pressures in undisturbed montmorillonitic clays can range
from 3,000 to 11,200 Ibs/t* (14,646 to 54,678 kg/m?). Pres-
sures this great may exceed foundation loads imposed by
single-family homes, single-story buildings, roads, sidewalks,
and concrete slabs. As the material dries, the loss of water
causes it to shrink. The processes of wetting and drying and
freeze-thaw churn and disturb the surface of expansive deposits,
giving some of them a characteristic "popcorn" texture. This
texture is a good indicator of the presence of expansive soil and
rock, and it can be seen in many areas of the state (figure 2).
Mesozoic-age marine shales are some of the most widely ex-
posed rocks in the state and typically contain high concentra-
tions of montmorillonite clay. They are the source of most
expansive deposits in Utah, particularly in the southeastern part
of the state (appendices 2, 3). Structures in Price, Green River,
Vernal, and St. George built on these shales have suffered ex-
tensive damage. These same shales are also found in narrow
outcrop bands along the north and south flanks of the Uinta
Mountains. In addition to marine shales, fine-grained Lake
Bonneville deposits and other deep-lake sediments in the
western basins, and volcanic tuff in the north-central part of the
state are susceptible to shrinking and swelling. The extent of
expansive Lake Bonneville sediments in the central basins of
western Utah is unknown. However, geotechnical studies show
that Bonneville deposits northeast of Delta and in central and
eastern Tooele County are expansive. Expansive volcanic tuff
in Morgan, Davis, and Summit Counties is known to have
damaged structures. In the town of Mountain Green in Morgan

Figure 2. "Popcom" texture on surface of expansive soil (photo by G. E.
Christenson).

County, damage from expansive soil caused several homes to
be condemned and removed. In all of these areas, improperly
designed roads and structures are susceptible to damage from
expansive soil.

Problems commonly associated with expansive soil and rock
are cracked foundations (figure 3), heaving and cracking of
road surfaces, and failure of wastewater disposal systems.
Single-family homes are particularly susceptible to expansive
soil and rock because foundation loads (1,500 to 2,500 Ibs/ftz;
7,323 to 12,205 kg/mz) may be less than the expansive pres-
sures (3,000 to 11,200 1bs/ft"; 14,646 to 54,678 kg/mz) caused
by the swelling material, making structures subject to heave
(Costa and Baker, 1981). Larger, heavier buildings are better
able to withstand the expansive pressure and are less suscep-
tible. Sidewalks, roads, buried utilities, and slabs-on-grade are
also susceptible to cracking and damage due to differential ex-
pansion of underlying material.

Wastewater disposal systems using soil-absorption fields can
also be damaged by expansive soil. Clay-rich deposits develop
cracks when dry, leaving voids which allow large volumes of
water to infiltrate initially. Once saturated, the clay minerals
swell, closing the voids. Soil-absorption systems installed in
expansive soil work until the soil becomes saturated and begins
to swell. The soil quickly becomes impermeable and the sys-
tems clog and fail, causing wastewater to flow to the surface
creating a health hazard (figure 4).

Drainage conditions affecting soil moisture content are im-
portant in areas of expansive soil. When water from sprinkler
systems or runoff from roofs and roads reaches deposits
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Figure 3. A, Damage to foundation at Moab Airport due to expansive soils, and B, building damage caused by expansive soils in Green River area (photo W.R.

Lund).

b

Figure 4. Surfacing effluent from wastewater disposal system due to reduction of permeability and plugging by expansive soils (photo W.R. Lund).

beneath the structure, damage may occur as the materiad chan-

ges volume. To mitigate and reduce damage resulting from im-
proper drainage or foundation design, severa techniques can be
used, Gutters and downspouts should direct water a least 10
feet (3m) away from foundation dabs (Costa and Baker, 1981).
Any vegetation that concentrates or draws large amounts of
water from the soil should not be used in landscape designs

near foundations. Areas of the home such as floors or wals
near heating or cooling units should be insulated to prevent
evaporation, which may cause locad changes in soil moisture.
House foundations can be strengthened by reinforcing the con-
crete with sted bars. Walls can be supported by pilings driven
into the soil to a depth below the active zone (Costa and Baker,
1981). Wide shoulders and good drainage dong highways can
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preventroad damage. In highway foundations a combination of
hydrated lime, cement, and organic compounds can be added to
road subgrade materials to stabilize the underlying soil (Costa
and Baker, 1981). If the presence of expansive soils is
suspected, a24-hour "presoak” of the material before determin-
ing percolation rates for wastewater disposal systems can
reduce the potential for system failure.

Collapsible Soil

The phenomenon of hydrocompaction, which causes sub-
sidence in collapse-prone soil, occurs in loose, dry, low-density
deposits, which decrease in volume or collapse when saturated
for the first time since deposition (Costa and Baker, 1981).
Collapsible soils are geologically young materials, such as
Holocene-age alluvial-fan and debris-flow sediments, and some
wind-blown silts. These deposits have a loose, "honeycomb"
structure and high dry strength, resulting from rapid deposition
and drying. When saturated, the "honeycomb" structure collap-
ses and the ground surface subsides, damaging property and
structures.

Alluvial-fan deposits are the most susceptible materials for
hydrocompaction in Utah. Fans commonly have steep surface
gradients, allowing rapid runoff of surface water during fan-
building depositional events. This allows deposits to dry quick-
ly and retain a relatively low density. The sediments are
commonly covered by similar material from subsequent deposi-
tional events creating a thick sequence of collapse-prone
material. Collapsible soils have a high dry strength resulting
from the bonding produced by dry clay films and soluble
minerals on or between particles. Between the particles are
voids formed by air entrapped in the sediments at the time of
deposition. Hydrocompaction is generally initiated by human
activities that involve applying water to the deposit such as ir-
rigation, water impoundment, lawn watering, alterations to
natural drainage, or wastewater disposal. The water wets the
susceptible materials, weakening the bonds between particles
and reducing the strength of the material, which causes it to col-
lapse and subside.

Field identification of hydrocompactible deposits is difficult,
however, most are classified as sandy silt (ML) or silty sand
(SM) in the Unified Soil Classification System. In general,
though, soil thought to be susceptible to hydrocompaction
should be tested in the laboratory for positive identification.
Costa and Baker (1981) outline four conditions as conducive to
the development of hydrocompactible soils: (1) High v01d ratio
- matenals with bulk dry densities less than 1.3 g/cm (80
b/t ) are subject to large amounts of settlement. Bulk densities
greater than 1.4 g/cm (90 lb/ft ) generally have less settlement.
(2) Clay content of about 12 percent - if deposits contain more
than this amount of clay, swelling of the clay generally reduces
the amount of subsidence. Deposits with less than 12 percent
clay do not have enough clay to provide intergrain bonds that
maintain a large void ratio. (3) Predominant clay mineral is

montmorillonite, which becomes hard when dry and acts as a
strong binder. (4) Deposit should be dry.

Collapsible soil is present in southwestern Utah, particularly
near the Cedar City and Hurricane Cliffs area, and around Rich-
field and Monroe in south-central Utah. In Cedar City, ap-
proximately 3 million dollars in damage to public and private
structures has been attributed to collapsible soil (Kaliser, 1978).
Elsewhere in Utah, areas most susceptible commonly occur
along any mountain front where alluvial-fan deposits contain
fine-grained deposits derived from shales, mudstones, and pos-
sibly volcanic rocks. Climate is also critical to the development
of hydrocompactible soil. The drier areas of Utah such as the
Great Basin and Colorado Plateau, where rainfall seldom
penetrates below the root zone (annual precipitation of 9 to 15
inches; 23-38 cm), provide the best conditions for development
of hydrocompactible soil.

Damage and problems associated with collapsible soil all re-
late to the introduction of water (usually by man) into the soil in
greater amounts than the average annual precipitation. This ex-
cess leads to eventual collapse of the soil (figure 5). Collapse
of the soil structure causes differential settlement, damaging
structures. Landscaping requiring irrigation is the most com-
mon reason for application of additional water. The soil around
structures is wetted to a depth below that reached by rainfall,
destroying the bonding between grains, and collapse occurs.
Collapse may also occur due to crop irrigation, concentrated
runoff from paved surfaces, and water introduced into the sub-
surface by wastewater disposal systems.

The most common procedure to detect and avoid collapsible
soils is a soil consolidation test. If collapsible soils are dis-
covered at a site several methods can be used to reduce the
potential for damage. Most are expensive and lengthy. The
building site can be deeply wetted and compacted to densities
that will support the building. Building sites can also be over-
excavated and backfilled with suitable material, and runoff col-
lection or landscaping designed to direct water away from the
structure. Avoiding areas containing collapsible soils is the
least expensive and best mitigation method.

Gypsiferous Soil and Rock

Gypsiferous deposits are subject to settlement caused by
dissolution of gypsum, creating a loss of internal structure and
volume within the deposit. Gypsum is a primary component in
some rocks and in soils derived form those rocks. Gypsum-rich
soil may also be formed in two other ways, as a secondary
mineral deposit leached from surficial layers and concentrated
lower in the soil profile, or as a material transported by wind or
water from outside sources. The most common sources for air-
borne gypsum are playas, on which crusts of gypsum salts are
formed as the wetted playa surface dries during the warmer
months of the year. These crusts of gypsum are easily eroded
and transported by wind.
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Figure 5. Damage to building in Nephi due to collapsible soil (photo G.E. Christenson).

Gypsiferous rock and soil deposits are common in south-
western Utah, particularly along the base of the Hurricane
Cliffs, and in the Uinta Basin near Vernal. There and else-
where in southwestern Utah, much of the gypsum present is
derived from erosion of gypsum-rich rock.

Gypsiferous rock and soil deposits have the potential to
cause damage to foundations and to cause land subsidence and
sinkholes. When wetted by irrigation for crops or landscaping,
or by water from wastewater disposal systems, gypsiferous soil
may subside due to dissolution of gypsum. In some cases large
underground solution cavities may form and then collapse (fig-
urec 0). Gypsum is also a weak material with low bearing
strength. When gypsum weathers it forms sulfuric acid and sul-
phate (Bell, 1983). These compounds may react with certain
types of cement, weakening foundations by damaging the ex-
terior surface.

Damage to structures from gypsiferous soils can be limited
by scveral methods. Soil tests to determine the presence of
gypsum are a first step. If gypsum is present, the outer walls of
structures can be coated with impermeable membranes or
bituminous coatings to protect them from deterioration. Special
types of concrete can also be used which resist damage from
gypsum. Because gypsum is dissolved by contact with water,
runoff from roofs and gutters should be directed away from the
structure. Landscaping close to the house should not include
plants which require regular watering.

Limestone and Karst Terrain

Karst is a geomorphic term that describes a type of terrain
with drainage and relief features created by the dissolution of
rock by ground and surface waters (Jennings, 1985) (figure 7).
Karst terrain is characterized by closed depressions  or
"sinkholes," caverns, and underground drainage. The most
common rock to develop karst terrain is limestone, but karst can
also develop in dolomite and gypsum. Limestone is a common
sedimentary rock and is composed largely of calcium carbonate
(CaCO3) in the form of the mineral calcite. Calcite has a
solubility of 20 to 400 parts per million in water and is highly
susceptible to dissolution. Dissolution removal of the rock by
water is the process by which karst features are formed. Frac-
tures within the rock, frost shattering, and strecam crosion also
aid in the development of karst landforms. Sinkholes, large
caverns, and high fracture permeability of rock in karst regions
commonly divert surface water underground.

Conditions for the development of karst terrain vary from
region to region, but in gencral are controlled by scveral com-
mon factors. The type, frequency, and arrangement of planes of
weakness within susceptible rock units are important because
they affect permeability and hydrology in karst terrain (Jen-
nings, 1985). Permeability controls dissolution activity. The
potential for karst development is reduced if overlying deposits
of unconsolidated material have a low pereability. This is espe-
cially true if the deposits consist of clay, which diverts or im-
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Figure 6. Collapse of surface due to dissolution of underlying gypsum in rock near Vemal, Utah.
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Figure 7. Schematic cross section of typical karst terrain showing geology
and hydrology.

pedes water movement into the subsurface. Finally, time exerts
great influence on the development of karst terrain. In general,
large caverns take a long time to develop, but once present, the
effects of collapse can appear quickly at the surface (Jammal,
1984).

Karst topography is present in middle Paleozoic-age (appen-
dix 1) limestone and dolomite throughout northern and western
Utah but is best developed in the Bear River Range and the

northeastern portion of the state. South of the Bear River
Range, sinkholes were present in the excavation for Porcupine
Dam in Cache County and beneath a reservoir in Laketown
Canyon in Rich County. Most karst features found in limestone
and dolomite in the Great Basin of western Utah are relict fea-
tures which may relate to moister climates during the Pleis-
tocene, or may have been created by ground water prior to the
rock being uplifted and tilted during basin and range normal
faulting (F.D. Davis, Utah Geological Survey, oral communica-
tion, January, 1990). Relict features in the Kaibab Limestone
along the Virgin River were exposed by recent flooding (figure
8). The potential for continued karst development in western
Utah is low, except for areas where ground water is present in
amounts large enough to cause dissolution of limestone and
dolomite. In the northern part of the state, however, surface and
ground water are more abundant and karst features are
widespread and well developed. Aside from western and north-
ern Utah, karst features are present on the north and south
flanks of the Uinta Mountains and in the central Wasatch Range
between Alpine and Spanish Fork Canyons. Karst features in
all these areas directly affect surface and especially subsurface
drainage and, because of this, play an important role in the type
of geologic hazards present.

Karst terrain is particularly susceptible to ground-water pol-
lution. The cavernous nature of Karst terrain provides an
avenue for contaminants from surface or subsurface sources to
enter the local ground-water system. Once introduced, con-
taminants can spread rapidly due to the interconnected system
of conduits. Contaminants remain concentrated, since the rock
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Figure 8. Karst sinkhole in the channel of the Virgin River (photo B.L. Everitt).

does not have the ability to filter impurities as soil or weathered
rock does. Although pollution in karst areas has not been wide-
ly documented in Utah, other states such as Kentucky, Min-
nesota, and Florida have experienced ground-water pollution in
karst terrain. In Utah, the most probable sources of contamina-
tion are wastewater disposal systems, landfills, and buried fuel
storage tanks.

Cavernous, subterranean openings in karst terrain often col-
lapse, leaving characteristic sinkholes at the surface. Structures
built in such areas may be damaged by subsurface collapse. No
documented occurrence of damage due to collapse has occurred
in Utah, but the potential for damage exists in known karst
areas. Avoiding areas underlain by limestone is the best
method of preventing ground-water and collapse problems. If
this is not possible, pre-construction planning and design of
wastewater disposal systems based on thorough geologic and
hydrologic investigations of construction sites can prevent
ground-water pollution. Dams and other impoundments in
limestone terrain require special design and mitigation con-
siderations with respect to foundation stability and leakage.

Soils Subject to Piping

Piping is a common process in arid climates where fine-
grained, uncemented, Holocene alluvium is incised by streams.
The term piping describes subsurface erosion by ground water
moving along permeable, noncohesive layers in unconsolidated
materials and exiting at a free face that intersects the layer
(Cooke and Warren, 1973; Costa and Baker, 1981). Removal
of fine-grained particles (silt and clay) by this process creates
voids that act as minute channels which direct the movement of
water (figure 9). As channels enlarge, water moving through
the conduit increases velocity and removes more material,
forming a "pipe." The "pipe" becomes a preferred avenue for
ground-water drainage, growing in size as larger volumes of
water are intercepted. Increasing the size of the pipe removes
support for its walls and roof, causing eventual collapse (figure
10). Collapse features form on the surface above the pipes,
directing even more surface water into the pipes. Eventually,
total collapse forms a gully that concentrates erosion along a
line of interconnected collapse features.

Several conditions are necessary for piping. Most important
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Figure 9. Schematic cross section of pipe in Holocene alluvium.

is water, present in volumes large enough to soak into the sub-
surface and reach layers or zones (animal burrows, decayed
plant roots) which conduct the water to a free face. The local
surface topography must also have enough relief to create a
hydraulic head and move water through the subsurface.
Deposits susceptible to piping must be fine grained and unce-
mented, but permeable enough to allow subsurface movement
of water. Finally, a free face or cliff is necessary for water and
sediment to exit the deposit (Costa and Baker, 1981).

Deposits susceptible to piping are found throughout Utah,
but most occur in the southeastern part of the state. Types of
material susceptible to piping include fine-grained alluvium,
fine-grained rock (siltstone, mudstone, and claystone), and vol-
canic tuff and ash. Holocene-age (10,000 years ago to present)
alluvial fill in canyon bottoms in the Colorado Plateau is the
most common material susceptible to piping in Utah (appendix
2). Claystone in this area is the next most likely material to
develop pipes. Outside the Colorado Plateau, fine-grained marl
and silt deposited by Lake Bonneville are susceptible to piping
in the western and northern deserts of Utah (C.G. Oviatt, Kan-
sas State University, oral communication, November, 1989).

Piping can cause damage to any structure built on soil sub-
ject to piping. Earthfill structures such as dams may also be
susceptible to piping, and piping of fine-grained embankment
materials at the base of the Quail Creek dike, near St. George,
contributed to its failure in 1989 (James and others, 1989). In
the Uinta Basin, irrigation of cropland adjacent to incised
drainages has caused extensive piping. In areas where piping is
common, roads are most frequently damaged because they
commonly parallel stream drainages and cross-cut numerous
pipes. In addition their construction commonly disturbs natural
runoff, concentrating it near the roads.

Because of their association with canyon-bottom stream
drainages, soils subject to piping are difficult to portray at the
scale of this map. Therefore, areas affected by piping are not

shown. Most drainages in southeastern and parts of western
and southwestern Utah contain deposits susceptible to piping.
Roads in these areas should be carefully located and properly
drained.

Damage caused by piping can be reduced by limiting the de-
gree to which natural drainage in soil susceptible to piping is
disturbed by construction. Runoff concentrated or ponded
along paved surfaces allows greater infiltration and crates a
potential for pipes to develop. Proper drainage along roads and
around structures is the most cost effective and successful
mitigation procedure. Culverts to collect runoff, and closed
conduits to carry the water away from the road, will prevent
damage. Concrete-lined drainage ditches and concrete or as-
phalt around culvert inlets and outlets can also limit damage.
Damage to cropland can likewise be reduced by reducing the
amount of irrigation along incised stream drainages.

Sand Dunes

Dunes are common surficial deposits in arid areas where
sand derived from the weathering of rock or from uncon-
solidated deposits is blown by the wind into mounds or ridges
(figure 11). Dune fields are also common and are composed of
many dunes of similar composition, oriented in a similar direc-
tion, and isolated from other dunes (Dean, 1978). Dunes in
Utah are composed of three types of materials. The most com-
mon is silica (quartz), which makes up approximately 60 per-
cent of all dunes. Thirty percent of Utah’s dunes are composed
of gypsum, and oolitic (calcium carbonate) dunes make up the
remaining 10 percent. Dunes occur downwind of source areas,
which include rock outcrops and alluvial and lacustrine sands
for silica dunes, playas for gypsum dunes, and the shore of
Great Salt Lake for oolitic dunes. Dunes are widespread
throughout western Utah where vegetation is sparse and
prevailing winds can readily move sandy sediments.

Intermontane basin fill consisting of alluvial and lacustrine
fine sand, silt, and clay eroded and transported from rock in
surrounding mountains is the main source for silica dunes.
These dunes are commonly found on the west side of mountain
ranges in western Utah where winds deposit the sand. Gypsum
in dunes is derived from the evaporation and eventual crystal-
lization of gypsum minerals during the seasonal wetting and
drying of playa surfaces. When these lakes dry out, the sand-
size crystals are moved by the wind and accumulate as dunes
(figure 12). Oolitic dunes are composed of calcium carbonate,
generally precipitated around a nucleus of fecal pellets from
brine shrimp. They form in shallow water near the wave wash
zone in Great Salt Lake, and previously formed along Lake
Bonneville shorelines. During low lake levels, winds rework
oolitic beach deposits into dunes. Many of the oolitic dunes in
the Great Salt Lake Desert are reworked early Holocene beach
deposits associated with prehistoric high levels of the Great Salt
Lake.
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Figure 10. A, Pipe in road surface over Holocene alluvium along the
(photos G.E. Christenson).

Figure 11. Coral Pink sand dunes (silica) in Kane County, Utah (photo G.E. Christenson).
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Silica dunes are most common in western Utah, from the
southern end of Tooele and Skull Valleys to the Escalante
Desert north of Enterprise. Gypsum dunes are found in the
greatest concentration in the Great Salt Lake Desert south and
east of the Bonneville Salt Flats. They are also found along the
lee side of many playas in the basins west of Delta. Oolitic
dunes are very localized and are concentrated in the north-
central portion of the state. They are found only in association
with oolitic sand beaches along Great Salt Lake and in the
Great Salt Lake Desert, where oolitic sands form early
Holocene beach ridges (Solomon and Black, 1990).

In areas where development encroaches on dunes, several
problems may occur. The most common problem associated
with dunes is the destabilization of inactive or vegetated dunes
by construction. The disturbed dunes may become reactivated,
migrate over roads, and bury structures. Burial of structures by
migrating dunes is also a problem where structures have been
built near active dunes (figure 13). Contamination of ground
water from wastewater disposal systems constructed in dune
sand may also be a problem. Dunes consist of uniform-size
sand grains and lack the fine clay and silt which help to filter ef-

Figure 12. Gypsum dunes in the Great Salt Lake Desert (photo B. J. Solo-
mon.
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fluent before it reaches the water table. Because of the uniform
grain size, dune sand is highly permeable and allows effluent to
move rapidly into the ground-water system. However, too
much fine material can also be a problem. Drain field lines in
dunes in Ivins became clogged by fine sand causing them to
fail. All of these factors combine to make dune sands an un-
suitable medium for wastewater disposal. Gypsiferous dunes
would be an especially poor wastewater disposal medium as the
gypsum would dissolve when wetted.

Effective mitigation practices for sand dune areas involve
avoiding building on, or disposing of wastewater in, such
deposits. Any disturbance can reactivate dunes stabilized by
vegetative cover. Active dunes should be avoided because of
their constant movement and unstable nature. In general, dunes
are a maintenance problem and only in extreme cases do they
preclude development.

Many small dune fields not shown on the map exist
throughout Utah, especially in the eastern and southeastern por-
tions of the state. They pose the same geologic hazards as the
larger mapped dune fields, and the same care should be taken
when beginning construction or disturbing dunes in any way.

Peat

Peat is an unconsolidated surficial deposit of partially
decomposed plant remains. It usually accumulates in areas of
shallow ground water and near standing water. These environ-
ments are anaerobic, or depleted in oxygen, which limits the
rate of decay. Topography and climate influence decay rates,
and low-lying areas and moist climates provide conditions con-
ducive to accumulation of peat. Plant parts are still visible in
most peat deposits but make up only 10 percent of the deposit;
the remaining 90 percent is moisture (Costa and Baker, 1981).
These organic-rich deposits have a high water-holding capacity
and consequently shrink and oxidize rapidly when drained
(Costa and Baker, 1981).

Due to the generally dry climate of Utah, peat deposits are
very localized. They are found in poorly drained areas along
the shores of Great Salt Lake, Utah Lake, and in low areas
formerly occupied by Lake Bonneville. In mountainous areas,
peat commonly forms in poorly drained depressions behind gla-
cial moraines or in the head areas of large landslides.

Several geologic hazards can affect structures built on peat
deposits. When water is removed from the deposit, it oxidizes
rapidly and subsides. Peat also is highly compressible and has a
low bearing strength, and it is subject to extreme settlement
when loaded. In the longer term, decomposition of organic
material may cause further subsidence. Dry peat deposits can
also be fire hazards, as they will smoulder and burn if ignited.
In general, peat deposits should be removed, avoided, or pre-
consolidated when encountered at construction sites.
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Figure 13. Oolitic dunes covering roads at Antelope Island State Park (photo Suzanne Hecker).

OTHER PROBLEMS

Mine Subsidence

Mine subsidence occurs above both active and abandoned
mines in Utah. The removal of rock from the subsurface can
cause subsidence of the land surface above as the void left by
mining is filled by collapse of overlying material. The long his-
tory of mining in Utah has created many areas with surface sub-
sidence or sinkholes (figure 14). Companies removing rock
from the subsurface are now required by law to devise a mining
method that reduces the potential for surface subsidence and to
monitor subsidence and file a report with the Utah Division of
Oil, Gas and Mining (DOGM) each year. The subsidence in-
vestigations are based on surveyed grids laid out over mining
areas. If subsidence occurs, the mine is required to alter their
mining methods to prevent further subsidence (A.C. Keith,
Utah Geological Survey, oral communication, January, 1990).
Data documenting subsidence in mines throughout Utah are not
readily available and therefore mine-induced subsidence is not
shown on this map. However, the limited information which is
available indicates that, in general, most mines experience some
subsidence each year. Most of the large active coal mines are
concentrated in the Book Cliffs and Wasatch Plateau areas.
Other areas where documented mine subsidence has occurred
are the Park City mining district and the Tintic mining district
around Eureka, Utah. In both of these areas, sinkholes have
formed due to collapse of underground workings, but only in
Eureka were structures damaged. The DOGM has ap-
proximately 1,100 mines listed in their abandoned mines data
file. Listings of the location of these mines and their condition
can be obtained from DOGM.

Disturbed vegetation

Ground cracking induced
by extensional forces

/,

LV

/. —

Open space from - N
material removed 2

i (TR ITR
P
U ‘|||||;‘u i’ 1

[ "'\I. -
|!!h.'l|'i“""'i[“..| ‘

I
ol

Figure 14. Schematic cross section of surface subsidence caused by col-
lapse of underground mine workings.

Sodium Sulfate

The presence of sodium sulfate in soil throughout the
western Great Basin has recently come to the attention of
geologists with the U.S. Soil Conservation Service because of
damage to earthen dams and irrigation structures (figure 15).
Soil with a high concentration of water-soluble sulfates (thenar-
dite, mirabolite) exhibits an expansive phenomenon resembling
that of expansive clays and frost heave (Blaser and Scherer,
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Figure 15. Sodium sulfate-rich ground-water seeps in the Green River For-
mation, near Duchesne, Utah (photo W.E. Mulvey).

1969). Sodium sulfate is deposited upon evaporation of surface
waters in playas. It has been identified, however, in many areas
other than playas and appears to be introduced as an airborne
particulate. In some cases the sodium sulfate is derived from a
bedrock source such as in Duchesne County, where the saline
facies of the Green River Formation introduces sodium sulfate
into the local surface and ground water (R.C. Rasely, U.S. Soil
Conservation Service, oral communication, November, 1989).

Several areas in Utah have higher than average concentra-
tions of sodium sulfate in the soil. Laboratory tests by the U.S.
Soil Conservation Service determined that sodium sulfate-rich
soil was present in the highlands north of St. George, Utah, and
in fill used for dams impounding stock ponds in the Blue
Creek-Howell watershed in Box Elder County, Utah. Most
sodium sulfate in northern Utah has its source in the fine-
grained, deep-water sediments left by Lake Bonneville.

Problems associated with sodium sulfate in soil include
deterioration of cement in concrete, and expansion and contrac-
tion similar to that experienced in expansive soil and rock.
When sodium sulfate comes in contact with concrete a chemical
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reaction takes place causing the cement in the concrete to
deteriorate. This can be avoided by the use of commercially
available sodium-sulfate resistant concrete. Expansive charac-
teristics of sodium sulfate soil in Utah are not well known.
Mitigation procedures are similar to those listed above for ex-
pansive soil. Soil chemistry tests to determine the presence of
sodium sulfate prior to construction are recommended.

CONCLUSIONS AND
RECOMMENDATIONS

Problem soil and rock are some of the most widespread
geologic hazards in Utah. They cover approximately 20 per-
cent of the state and underlie many urbanized areas. Some
types of problem soil and rock occur over large areas, whereas
others are found only locally. Itis likely that more areas are af-
fected by problem soils and rock than are shown on the map,
but because of the limited information available only recog-
nized areas are shown.

The two most widespread problem deposits are expansive
soil and rock derived from marine shale, and limestone and
dolomite susceptible to dissolution. Expansive soil and rock
occurs over much of the Uinta Basin and south-central Utah.
Limestone and dolomite are found in central and western Utah,
but the greatest concentration is in the north-central part of the
state.  Along the mountain fronts from Provo south to the
Arizona border, collapsible soil may be found in alluvial-fan
sediments. Dunes are scattered throughout the western deserts,
and soils subject to piping are found primarily in drainages in-
cised into Holocene alluvium in canyons of eastern Utah. Peat
deposits are found around the shores of Great Salt Lake and
Utah Lake, as well as in mountain drainages dammed by glacial
moraines and landslides. Subsidence due to collapse of under-
ground workings has occurred in Park City and Eureka, above
mines in the Book Cliffs, and on the eastern slope of the
Wasatch Plateau. Sodium sulfate-rich soil is known to occur
throughout western Utah and parts of the Uinta Basin.

Most of the hazards created by these problem soil and rock
can be mitigated or avoided if they are understood and their
areal extent is known. This map and text are a first step in iden-
tifying areas where problem soil and rock are known to occur
and have caused damage. It also delineates areas where
problems may be expected. The information on the map should
be used by local governments and the private sector to identify
where problem deposits may occur and where site-specific
studies are advisable prior to development. However, because
of the small scale of the map it should not be used as a sub-
stitute for a detailed site-specific investigation. Recognizing
that problem soil and rock cover parts of the state and taking
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precautions to mitigate the potential hazards they represent can
reduce the need for costly corrective measures after damage to
structures and roads has occurred.
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Appendix 1
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